39 research outputs found

    The Sub-Surface Structure of a Large Sample of Active Regions

    Full text link
    We employ ring-diagram analysis to study the sub-surface thermal structure of active regions. We present results using a large number of active regions over the course of Solar Cycle 23. We present both traditional inversions of ring-diagram frequency differences, with a total sample size of 264, and a statistical study using Principal Component Analysis. We confirm earlier results on smaller samples that sound speed and adiabatic index are changed below regions of strong magnetic field. We find that sound speed is decreased in the region between approximately r=0.99R_sun and r=0.995R_sun (depths of 3Mm to 7Mm), and increased in the region between r=0.97R_sun and r=0.985R_sun (depths of 11Mm to 21Mm). The adiabatic index is enhanced in the same deeper layers that sound-speed enhancement is seen. A weak decrease in adiabatic index is seen in the shallower layers in many active regions. We find that the magnitudes of these perturbations depend on the strength of the surface magnetic field, but we find a great deal of scatter in this relation, implying other factors may be relevant.Comment: 16 pages, 11 figures, accepted for publication in Solar Physic

    Properties of high-frequency wave power halos around active regions: an analysis of multi-height data from HMI and AIA onboard SDO

    Full text link
    We study properties of waves of frequencies above the photospheric acoustic cut-off of \approx5.3 mHz, around four active regions, through spatial maps of their power estimated using data from Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard Solar Dynamics Observatory (SDO). The wavelength channels 1600 {\AA} and 1700 {\AA} from AIA are now known to capture clear oscillation signals due to helioseismic p modes as well as waves propagating up through to the chromosphere. Here we study in detail, in comparison with HMI Doppler data, properties of the power maps, especially the so called 'acoustic halos' seen around active regions, as a function of wave frequencies, inclination and strength of magnetic field (derived from the vector field observations by HMI) and observation height. We infer possible signatures of (magneto-)acoustic wave refraction from the observation height dependent changes, and hence due to changing magnetic strength and geometry, in the dependences of power maps on the photospheric magnetic quantities. We discuss the implications for theories of p mode absorption and mode conversions by the magnetic field.Comment: 22 pages, 12 figures, Accepted by journal Solar Physic

    Seeing-Induced Errors in Solar Doppler Velocity Measurements

    Full text link
    Imaging systems based on a narrow-band tunable filter are used to obtain Doppler velocity maps of solar features. These velocity maps are created by taking the difference between the blue- and red-wing intensity images of a chosen spectral line. This method has the inherent assumption that these two images are obtained under identical conditions. With the dynamical nature of the solar features as well as the Earth's atmosphere, systematic errors can be introduced in such measurements. In this paper, a quantitative estimate of the errors introduced due to variable seeing conditions for ground-based observations is simulated and compared with real observational data for identifying their reliability. It is shown, under such conditions, that there is a strong cross-talk from the total intensity to the velocity estimates. These spurious velocities are larger in magnitude for the umbral regions compared to the penumbra or quiet-sun regions surrounding the sunspots. The variable seeing can induce spurious velocities up to about 1 km/s It is also shown that adaptive optics, in general, helps in minimising this effect.Comment: 14 page

    Physical Properties of Wave Motion in Inclined Magnetic Fields Within Sunspot Penumbrae

    Get PDF
    At the surface of the Sun, acoustic waves appear to be affected by the presence of strong magnetic fields in active regions. We explore the possibility that the inclined magnetic field in sunspot penumbrae may convert primarily vertically propagating acoustic waves into elliptical motion. We use helioseismic holography to measure the modulus and phase of the correlation between incoming acoustic waves and the local surface motion within two sunspots. These correlations are modeled assuming the surface motion is elliptical, and we explore the properties of the elliptical motion on the magnetic field inclination. We also demonstrate that the phase shift of the outward propagating waves is opposite to the phase shift of the inward propagating waves in stronger, more vertical fields, but similar to the inward phase shifts in weaker, more inclined fields.Comment: 22 pages, 13 figure

    Seismic Emissions from a Highly Impulsive M6.7 Solar Flare

    Full text link
    On 10 March 2001 the active region NOAA 9368 produced an unusually impulsive solar flare in close proximity to the solar limb. This flare has previously been studied in great detail, with observations classifying it as a type 1 white-light flare with a very hard spectrum in hard X-rays. The flare was also associated with a type II radio burst and coronal mass ejection. The flare emission characteristics appeared to closely correspond with previous instances of seismic emission from acoustically active flares. Using standard local helioseismic methods, we identified the seismic signatures produced by the flare that, to date, is the least energetic (in soft X-rays) of the flares known to have generated a detectable acoustic transient. Holographic analysis of the flare shows a compact acoustic source strongly correlated with the impulsive hard X-ray, visible continuum, and radio emission. Time-distance diagrams of the seismic waves emanating from the flare region also show faint signatures, mainly in the eastern sector of the active region. The strong spatial coincidence between the seismic source and the impulsive visible continuum emission reinforces the theory that a substantial component of the seismic emission seen is a result of sudden heating of the low photosphere associated with the observed visible continuum emission. Furthermore, the low-altitude magnetic loop structure inferred from potential--field extrapolations in the flaring region suggests that there is a significant inverse correlation between the seismicity of a flare and the height of the magnetic loops that conduct the particle beams from the corona.Comment: 16 pages, 7 figures, Solar Physics Topical Issue: SOHO 19/GONG 2007 "Seismology of Magnetic Activity", Accepte

    Determining Absorption, Emissivity Reduction, and Local Suppression Coefficients inside Sunspots

    Full text link
    The power of solar acoustic waves is reduced inside sunspots mainly due to absorption, emissivity reduction, and local suppression. The coefficients of these power-reduction mechanisms can be determined by comparing time-distance cross-covariances obtained from sunspots and from the quiet Sun. By analyzing 47 active regions observed by SOHO/MDI without using signal filters, we have determined the coefficients of surface absorption, deep absorption, emissivity reduction, and local suppression. The dissipation in the quiet Sun is derived as well. All of the cross-covariances are width corrected to offset the effect of dispersion. We find that absorption is the dominant mechanism of the power deficit in sunspots for short travel distances, but gradually drops to zero at travel distances longer than about 6 degrees. The absorption in sunspot interiors is also significant. The emissivity-reduction coefficient ranges from about 0.44 to 1.00 within the umbra and 0.29 to 0.72 in the sunspot, and accounts for only about 21.5% of the umbra's and 16.5% of the sunspot's total power reduction. Local suppression is nearly constant as a function of travel distance with values of 0.80 and 0.665 for umbrae and whole sunspots respectively, and is the major cause of the power deficit at large travel distances.Comment: 14 pages, 21 Figure

    Helioseismology of Sunspots: A Case Study of NOAA Region 9787

    Get PDF
    Various methods of helioseismology are used to study the subsurface properties of the sunspot in NOAA Active Region 9787. This sunspot was chosen because it is axisymmetric, shows little evolution during 20-28 January 2002, and was observed continuously by the MDI/SOHO instrument. (...) Wave travel times and mode frequencies are affected by the sunspot. In most cases, wave packets that propagate through the sunspot have reduced travel times. At short travel distances, however, the sign of the travel-time shifts appears to depend sensitively on how the data are processed and, in particular, on filtering in frequency-wavenumber space. We carry out two linear inversions for wave speed: one using travel-times and phase-speed filters and the other one using mode frequencies from ring analysis. These two inversions give subsurface wave-speed profiles with opposite signs and different amplitudes. (...) From this study of AR9787, we conclude that we are currently unable to provide a unified description of the subsurface structure and dynamics of the sunspot.Comment: 28 pages, 18 figure

    Subsurface Flows in and Around Active Regions with Rotating and Non-rotating Sunspots

    Full text link
    The temporal variation of the horizontal velocity in subsurface layers beneath three different types of active regions is studied using the technique of ring diagrams. In this study, we select active regions (ARs) 10923, 10930, 10935 from three consecutive Carrington rotations: AR 10930 contains a fast-rotating sunspot in a strong emerging active region while other two have non-rotating sunspots with emerging flux in AR 10923 and decaying flux in AR 10935. The depth range covered is from the surface to about 12 Mm. In order to minimize the influence of systematic effects, the selection of active and quiet regions is made so that these were observed at the same heliographic locations on the solar disk. We find a significant variation in both components of the horizontal velocity in active regions as compared to quiet regions. The magnitude is higher in emerging-flux regions than in the decaying-flux region, in agreement with earlier findings. Further, we clearly see a significant temporal variation in depth profiles of both zonal and meridional flow components in AR 10930, with the variation in the zonal component being more pronounced. We also notice a significant influence of the plasma motion in areas closest to the rotating sunspot in AR 10930 while areas surrounding the non-rotating sunspots in all three cases are least affected by the presence of the active region in their neighborhood.Comment: Solar Physics (in press), includes 11 figure

    Time--Distance Helioseismology Data Analysis Pipeline for Helioseismic and Magnetic Imager onboard Solar Dynamics Observatory (SDO/HMI) and Its Initial Results

    Get PDF
    The Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory (SDO/HMI) provides continuous full-disk observations of solar oscillations. We develop a data-analysis pipeline based on the time-distance helioseismology method to measure acoustic travel times using HMI Doppler-shift observations, and infer solar interior properties by inverting these measurements. The pipeline is used for routine production of near-real-time full-disk maps of subsurface wave-speed perturbations and horizontal flow velocities for depths ranging from 0 to 20 Mm, every eight hours. In addition, Carrington synoptic maps for the subsurface properties are made from these full-disk maps. The pipeline can also be used for selected target areas and time periods. We explain details of the pipeline organization and procedures, including processing of the HMI Doppler observations, measurements of the travel times, inversions, and constructions of the full-disk and synoptic maps. Some initial results from the pipeline, including full-disk flow maps, sunspot subsurface flow fields, and the interior rotation and meridional flow speeds, are presented.Comment: Accepted by Solar Physics topical issue 'Solar Dynamics Observatory
    corecore